Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length.
نویسندگان
چکیده
During cell division, a microtubule-based mitotic spindle mediates the faithful segregation of duplicated chromosomes into daughter cells. Proper length control of the metaphase mitotic spindle is critical to this process and is thought to be achieved through a mechanism in which spindle pole separation forces from plus-end-directed motors are balanced by forces from minus-end-directed motors that pull spindle poles together. However, in contrast to this model, metaphase mitotic spindles with inactive kinesin-14 minus-end-directed motors often have shorter spindle lengths, along with poorly aligned spindle microtubules. A mechanistic explanation for this paradox is unknown. Using computational modeling, in vitro reconstitution, live-cell fluorescence microscopy, and electron microscopy, we now find that the budding yeast kinesin-14 molecular motor Kar3-Cik1 can efficiently align spindle microtubules along the spindle axis. This then allows plus-end-directed kinesin-5 motors to efficiently exert the outward microtubule sliding forces needed for proper spindle bipolarity.
منابع مشابه
Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14
During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end-directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end-directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in...
متن کاملA Role for Metaphase Spindle Elongation Forces in Correction of Merotelic Kinetochore Attachments
During mitosis, equal segregation of chromosomes depends on proper kinetochore-microtubule attachments. Merotelic kinetochore orientation, in which a single kinetochore binds microtubules from both spindle poles [1], is a major cause of chromosome instability [2], which is commonly observed in solid tumors [3, 4]. Using the fission yeast Schizosaccharomyces pombe, we show that a proper force ba...
متن کاملMicrotubule minus end motors kinesin-14 and dynein drive nuclear congression in parallel pathways
Microtubules (MTs) and associated motors play a central role in nuclear migration, which is crucial for diverse biological functions including cell division, polarity, and sexual reproduction. In this paper, we report a dual mechanism underlying nuclear congression during fission yeast karyogamy upon mating of haploid cells. Using microfluidic chambers for long-term imaging, we captured the pre...
متن کاملDirectionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry.
Kinesin-5 motors fulfil essential roles in mitotic spindle morphogenesis and dynamics as slow, processive microtubule (MT) plus-end directed motors. The Saccharomyces cerevisiae kinesin-5 Cin8 was found, surprisingly, to switch directionality. Here, we have examined directionality using single-molecule fluorescence motility assays and live-cell microscopy. On spindles, Cin8 motors mostly moved ...
متن کاملMechanism for Anaphase B: Evaluation of "Slide-and-Cluster" versus "Slide-and-Flux-or-Elongate" Models.
Elongation of the mitotic spindle during anaphase B contributes to chromosome segregation in many cells. Here, we quantitatively test the ability of two models for spindle length control to describe the dynamics of anaphase B spindle elongation using experimental data from Drosophila embryos. In the slide-and-flux-or-elongate (SAFE) model, kinesin-5 motors persistently slide apart antiparallel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2014